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Introduction 
From a machine learning point of view, classification of gene 
expression patterns is a very particular task. Typically, 
training data consists of few samples (small number of 
experiments) but contains many variables (expression levels 
measured in each experiment). In this context classical 
machine learning methods may cause various difficulties [1]. 
For instance, statistical models, particularly those with many 
parameters, may overfit the training data. Thereby, they 
rather adapt to noise in the data than learn the desired phe-
nomenon.  Moreover, common machine learning methods do 
not provide an intuitive and biologically meaningful explana-
tion of their results. Rather the single signatures typically 
determined to characterize specific phenotypes contain a set 
of biologically unfocused genes. It is very questionable, 
whether a single global signature optimized for classification 
power actually reflects the underlying biological mechanisms. 
In the context of clinical diagnosis, we expect phenotypically 
homogeneous groups of patients to carry differing gene 
expression patterns since differing biological mechanisms 
may lead to the same phenotype. Furthermore, we observe 
much redundancy in gene expression data, since co-regula-
ted genes are highly correlated. Thus, genes from biological-
ly unfocused signatures may be replaced by biologically 
coherent ones with little loss in classifier performance. 
 
Molecular Symptoms 
In this research, we consider the task to recognize a parti-
cular group of patients presenting a specific phenotype. We 
call this group the disease group, to be separated from the 
control group. In Structured Analyses of Microarrays we 
suggest to determine several biological classifiers to detect 
the disease group. We particularly aim for classifiers with 
excellent specificity and accept classifiers with suboptimal 
sensitivity. This is in analogy with symptoms in clinical con-
text: symptoms are never present in healthy people, but are 
characteristic for certain patients. Therefore, we call these 
classifiers molecular symptoms. They allow for an additional, 
molecular stratification of patients according to patterns of 
their absence and presence. 
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Fig 1: A glimpse on the structure of the Gene Ontology Top: the root node with its 
children. Bottom: an excerpt from the bottom of the GO graph. 

In order to determine whether a signature is biologically fo-
cused, we need functional annotations for the genes present 
on the microarray in a systematic way.  Structuring biological 
knowledge and systematic collection of gene function 
annotation are central goals of the Gene Ontology database 
[2]. Biological terms related to molecular functions, biological 
processes and cellular components are collected into a 
directed acyclic graph where 
each node represents a term 
and child-terms are either 
members or representatives of 
their parent-terms. Moreover, 
genes are attributed to GO-
nodes according to their mole-
cular function, involvement into 
biological processes and locali-
zation within the cell. 
In Figure 1 we illustrate the 
Gene Ontology by depicting two 
small parts of the directed 
acyclic graph. On the left hand 
side of the Figure, the graph‘s 
root is shown with its children. 
These children represent the 

major topics distinguished in the Gene Ontology, namely 
“molecular function”, “biological process” and “cellular 
component”. On the right hand side of the Figure, a few 
nodes from the bottom of the graph are shown and illustrate 
the fact that nodes may have several parents. 
 
Results 
We suggest to use the Gene Ontology to search for 
biologically focused classifiers. In order to obtain state-of-
the-art performance, we aggregate these focused classifiers 
representing molecular symptoms as follows: 
• For each GO-node with annotated genes, one local 

classifier is implemented using the nearest shrunken 
centroids method [3] on expression data of the anno-
tated genes. 

• According to their classification performance each local 
classifier obtains a weight. We define a performance 
criterion analogous to the probability of misclassification. 

• Results of children are collected in their parents by 
weighted sums using these weights, thereby computing 
probabilities for each class in each node. 

• A shrinkage approach in a cross-validation setting is 
used to regularize weights such that uninformative 
branches of the classifier vanish. 

This procedure generates a graph structured global classifier 
according to GO's hierarchical structure. The overall classify-
cation result is provided by the root node's classifier. We 
describe our method in detail in [4]. 
We have implemented structured analysis of microarrays as 
an R package called stam [5]. It is compliant to the Biocon-
ductor suite of bioinformatics related R extensions [6]. Our 
implementation uses the R-package pamr which provides 
training, prediction and cross validation for the nearest 
shrunken centroids method for classification. The computa-
tion is performed in a postorder traversal of the Gene Ontolo-
gy. In a postorder traversal of a graph, all child nodes of a 
parent are treated before the parent. Thus we ensure that all 
data needed for training or prediction in a node are actually 
available. For the associations of probe-sets with GO terms 
and for the hierarchical structure of GO we rely on 
Bioconductor metadata packages.  
 
Application to leukemia 
In structured analysis of microarrays each classifier bases its 
decision only on information related to the biological aspect it 
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Fig 2: Structured analysis of 327 acute lymphocytic  leukemia patients. Molecular symptoms specific for MLL are 
shown. They are filtered by minimum specificity. 
ents. Therefore, when considering an overall classifi-
 result, its rationale can be deduced from the various 
ier results. Actually, through the identified molecular 
oms associated to subsets of patients in the disease 
, we obtain an additional molecular stratification of 
ts according to patterns of absence and presence of 
ymptoms. 
ve evaluated the method and our implementation on a 

dataset from a study on acute lymphocytic leukaemia 
n this study Affymetrix HG-U95Av2 chips have been 
to measure the gene expression profiles in bone 
w of 327 patients.  We randomly split this data into 
g and test set.  Figure 2 shows an example for 
ular symptoms based patient stratification of the MLL 
pe of acute lymphocytic leukemia (ALL) investigated in 
 MLL patients have been included in the study. We 
trained StAM for detection of MLL on 217 of the 
ble samples including 14 MLL cases. The 110 test 
es are classified without error in the root node. 
 2 is focused on the 20 MLL samples in the dataset. In 
enter of the figure the probability computed by 
iers in the classifier graph for each sample are shown 
lor code (see right hand side of the figure). In the 
, rows correspond to GO-classifiers and columns 
 samples. The samples from the test set are marked 
apital letters on the x-axis. Clustering this image in both 
ons brings similar classifiers and samples together. 
raph to the left of Figure 2 shows the GO relations 
en the classifiers. The sensitivities and  specificities 

between the GO structure and the image are 
ted on the test set only. In Figure 2, bright regions 
ent presence, black regions absence of molecular 
oms. 
n group patients according to patterns of molecular 

oms. For instance, rows 2 to 6 in Figure 2 represent a 
ular symptom related to apoptosis, which is present in 
t samples except for sample G. Only in test samples A, 
 C we observe the symptom driven by genes involved 
imicrobial humoral response. Effects in genes usually 
ed in skeletal development are observed in test 
es A and B only, while samples B and C show 
cal patterns for ALL in cell motility. Samples B and G 
articular expression in synaptic transmission. 

With structured analysis of microarrays, we propose an 
approach to augment microarray gene expression data 
through functional annotations provided by the Gene 
Ontology. We use the additional information to compute 
class predictions for many biological aspects. On various 
datasets we have found that our approach can deliver 
classification results of similar accuracy as state-of-the-art 
methods currently in use. In addition, structured analysis of 
microarrays points to biological aspects relevant to the 
recognition of the investigated phenotype. We introduce the 
notion of molecular symptoms and illustrate their potential to 
provide an additional molecular stratification of patients. 
 
Outlook 
We plan to apply our method to various leukaemia related 
datasets and thus investigate a series of established 
clinically relevant phenotypes with the aim to uncover so far 
unrecognised  molecular sub types.  
 
Lit.: 1. T. Hastie, R. Tibshirani, and J. Friedman. The 
Elements of Statistical Learning. Springer Series in Statistics. 
Springer, New York, 2001. 2. M. Ashburner, C. A. Ball, J. A. 
Blake, D. Botstein, et al. Gene ontology: tool for the 
unification of biology. the gene ontology consortium Nat 
Genet., 25(1):25-29, May 2000. 3. R. Tibshirani, T. Hastie, B. 
Narasimhan, and G. Chu. Diagnosis of multiple cancer types 
by shrunken centroids of gene expression. Proc Natl Acad 
Sci USA, 99(10):6567-72, May 2002. 4. C. Lottaz and R. 
Spang. Molecular decomposition of complex clinical pheno-
types using  biologically structured analysis of microarray 
data. Bioinformatics, 21(9):1971-8, May 2005. 5. C. Lottaz 
and R. Spang. stam - a bioconductor compliant r package for 
structured analysis of microarray data. BMC Bioinformatics, 
6(1):211, Aug 2005.6. R. C. Gentleman, V. J. Carey, D. M. 
Bates, B. Bolstad, et al. Bioconductor: Open software 
development for computational biology  and bioinformatics. 
Genome Biol, 5(10):R80, 2004. 7. E. J. Yeoh, M. E. Ross, S. 
A. Shurtleff, W. K. Williams, et al. Classification, subtype 
discovery, and prediction of outcome in  pediatric acute 
lymphoblastic leukemia by gene expression profiling. Cancer 
Cell}, 1(2):133-143, Mar 2002. 
 

 




